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Mounting experimental evidence demonstrate that sex neuroactive steroids
(neurosteroids) are essential for memory formation. Neurosteroids have a profound
impact on the function and structure of neural circuits and their local synthesis
is necessary for the induction of both long-term potentiation (LTP) and long-
term depression (LTD) of synaptic transmission and for neural spine formation in
different areas of the central nervous system (CNS). Several studies demonstrated
that in the hippocampus, 17β-estradiol (E2) is necessary for inducing LTP, while
5α-dihydrotestosterone (DHT) is necessary for inducing LTD. This contribution has been
proven by administering sex neurosteroids in rodent models and by using blocking
agents of their synthesis or of their specific receptors. The general opposite role of
sex neurosteroids in synaptic plasticity appears to be dependent on their different
local availability in response to low or high frequency of synaptic stimulation, allowing
the induction of bidirectional synaptic plasticity. The relevant contribution of these
neurosteroids to synaptic plasticity has also been described in other brain regions
involved in memory processes such as motor learning, as in the case of the vestibular
nuclei, the cerebellum, and the basal ganglia, or as the emotional circuit of the
amygdala. The rapid effects of sex neurosteroids on neural synaptic plasticity need the
maintenance of a tonic or phasic local steroid synthesis determined by neural activity
but might also be influenced by circulating hormones, age, and gender. To disclose the
exact mechanisms how sex neurosteroids participate in finely tuning long-term synaptic
changes and spine remodeling, further investigation is required.

Keywords: 17β-estradiol, testosterone, 5α-dihydrotestosterone, P450 aromatase, 5α-reductase, LTP, LTD,
synaptic plasticity

INTRODUCTION

Sex neurosteroids are a group of cholesterol-derived molecules that are synthesized de novo within
the central nervous system (CNS) where they are able to exert local effects (Baulieu, 1981; Baulieu
and Robel, 1990). Among these, estrogens and androgens influence the general development
of neural circuits, motor adaptation, learning, memory (Luine and Frankfurt, 2012), emotional
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behavior (Altemus, 2017), and cognition (Luine, 2014), and they
are implicated in some psychiatric disorders (Bangasser and
Valentino, 2014) modulating the function of different areas of
the brain such as the hippocampus, the amygdala, the vestibular
and cerebellar systems, and the nucleus striatum (Beauchet, 2006;
Andreescu et al., 2007; Colciago et al., 2015; Bender et al., 2017;
Diotel et al., 2018; Mohamad et al., 2018; Wagner et al., 2018;
Dieni et al., 2020; Luine and Frankfurt, 2020).

These actions have a major role in the induction and
maintenance of neural connections during development and
the entire life-span by directing synaptogenesis, dendritic spine
formation, and functional long-term potentiation (LTP) or long-
term depression (LTD) of synaptic transmission.

Enzymes responsible for the biosynthesis of neurosteroids
from cholesterol are present in the nervous system (Mensah-
Nyagan et al., 1999; Giatti et al., 2019). Testosterone is synthesized
through conversion of cholesterol into pregnenolone, a
neurosteroid that is subsequently metabolized, leading to
formation of 5α-dihydrotestosterone (DHT) or 17β-estradiol
(E2) by the action of the 5α-reductase or P450 aromatase
enzymes, respectively. The local concentration of these
neurosteroids was found to be significantly higher in some
areas of the CNS (e.g., hippocampus) in respect to blood, where
they bind to specific estrogen receptors (ERα, ERβ, and multiple
isoforms) or to androgen receptors (AR) (Mukai et al., 2006;
Hatanaka et al., 2015). These receptors are largely distributed
in the CNS and their activation can elicit diverse genomic and
non-genomic cell functions.

Besides the genomic effects that occur within hours, leading
to up- or downregulation of gene transcription, E2 and DHT,
the most active metabolite of testosterone, can also activate
rapid intracellular signaling pathways, acting within seconds
or minutes via extranuclear membrane-associated forms of
receptors (Kawato, 2004). In neurons, membrane effects of
E2 may lead to the stimulation of different enzymes such as
phospholipase C (PLC) and protein kinase C (PKC) that in
turn stimulate the production of IP3 and the elevation of
intracellular calcium levels. These molecules may rapidly change
the function of neurons by acting as second messengers leading
to the activation of further enzymatic cascades including the
src kinase and the MAPK/ERK pathway (Evinger and Levin,
2005; Srivastava, 2012; Murakami et al., 2018). As in the case
of estrogens, evidence has been accumulated to involve rapid
responses to androgens, dependent or independent on ARs
(Foradori et al., 2008). Many cellular responses to androgens
are transcription independent; in fact, activated ARs are able
to associate with molecular substrates in the cytoplasm and the
inner layer of the cell membrane to activate intracellular kinase
cascades (Soma et al., 2018).

The activation of neural network within the CNS might
produce rapid behavioral changes by stimulating estrogenic or
androgenic sex neurosteroid signaling and rapidly modulating
the enzyme function involved in the induction of long-
term synaptic plasticity. Accordingly, the consolidation of
hippocampal memory might be facilitated within minutes after
treatments with estrogenic and androgenic neurosteroids or
with agonists of their receptors, enhancing the performance

on hippocampal memory tasks, as reported in experiments
performed with rats and mice (Luine et al., 2003; Aubele
et al., 2008; Benice and Raber, 2009; Inagaki et al., 2010, 2012;
Babanejad et al., 2012; Phan et al., 2012, 2015; Jacome et al., 2016).

Here, we will review evidence supporting the immediate
involvement of the most neuroactive estrogenic and androgenic
neurosteroids, namely E2 and testosterone/DHT, in the induction
of neuronal synaptic plasticity, the capability of neuronal
circuitries to modify their function in response to environment-
triggered electric signals. The electrophysiological actions of E2
and DHT on long-term synaptic plasticity will be presented.

NEURAL E2 INFLUENCES
HIPPOCAMPAL LTP

The role of E2 acting as a neurosteroid in memory formation
has been described since the late 1980s and has been recently
confirmed by different research groups (Ooishi et al., 2012;
Di Mauro et al., 2015; Fester and Rune, 2015; Hasegawa
et al., 2015; Lu et al., 2019; Tozzi et al., 2019). These studies
were guided by the major general evidence that inhibition of
E2 synthase (P450 aromatase) activity produced hippocampal-
related memory deficits both in women and in female rodents
(Bayer et al., 2015; Tuscher et al., 2016). They also pointed
out that E2, synthesized in the CNS, regulates cognition and
behavior independently of gender, assigning to the neural E2
signaling system a general modulator role of CNS function
(Moradpour et al., 2006; Saldanha et al., 2011; Bailey et al.,
2013, 2017; Tuscher et al., 2016; Fester et al., 2017). In the
hippocampus, E2-mediated synaptic activity was found to be
related with memory formation and early and late influence
of E2 on long-term electrophysiological synaptic effects and on
dendritic spine formation has been described in animal models
(Kramar et al., 2009).

The question how E2 can regulate the physiology of neurons
involved in memory is still a matter of debate. E2 can directly
influence the electric membrane properties of neurons or it can
affect synaptic transmission, with synaptic changes suggested to
be strongly correlated to functional modifications of nervous
system networks. For example, E2 administration changed very
rapidly the neuronal excitability and the synaptic responses of
hippocampal pyramidal neurons, also triggering both short- and
long-term effects on glutamate-mediated signaling (Wong and
Moss, 1991, 1992). These rapid effects, occurring a few minutes
after administration of this neurosteroid, strongly suggest
major non-genomic mechanisms of action for E2-dependent
facilitation of LTP (Warren et al., 1995; Cordoba Montoya
and Carrer, 1997; Good et al., 1999). Electrophysiological
recordings of hippocampal rat slices evidenced that E2 facilitation
of LTP is mediated by NMDAR currents with effects both
in males and females (Foy et al., 1999), as confirmed by
pharmacological inhibition of the E2- and NMDA-dependent
LTP using GluN2B-containing NMDA receptor antagonists
(Smith and McMahon, 2005, 2006). The action of the E2-
mediated modulation of NMDAR-dependent LTP was found
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to involve several intracellular protein kinases and membrane-
associated targets, as suggested by experiments where incubation
of hippocampal slices with blockers of ERs, MAPK/ERK, PKA,
PKC, PI3K, NR2B, or CaMKII did not allow the induction of
LTP in the presence of known E2 concentrations (Hasegawa
et al., 2015). However, most of the studies exploring the
influence of hippocampal E2 on synaptic memory involved
experimental protocols where E2 was applied exogenously, an
approach that may have limited the possibility to determine
the exact source of neural E2, leaving unsolved the question
whether LTP induction in physiological conditions needs the
presence of the E2 neurosteroid. An important advance in the
knowledge on the E2 origin and the mechanism of E2-mediated
LTP was provided by studies using an electrophysiological and
pharmacological approach of investigation that involved the
use of drugs inhibiting the E2 synthesis or blockers of the
ERs in animal models. Electrophysiological experiments aimed
at investigating local mechanisms of LTP induction by using
blocking agents of E2 synthesis were first performed in brain
slices of male rats containing the medial vestibular nuclei
(Grassi et al., 2009). Here, it has been found that the acute
pharmacological inhibition of P450 aromatase with letrozole
or the acute blockade of ERs (Grassi et al., 2009) with ICI
182780 (Scarduzio et al., 2013) prevented the LTP induction.
This approach was then extended to the hippocampus where
the role of locally synthesized E2 was demonstrated in male
rats by measuring the effect of blockade of the E2 synthesis or
receptors on the synaptic field potentials evoked in the CA1
region (Grassi et al., 2011; Pettorossi et al., 2013a). In fact,
the LTP amplitude was markedly reduced under block of E2
synthesis or receptors, suggesting a facilitatory role of E2 on LTP.
Further experiments performed in single hippocampal pyramidal
neurons evidenced that in most of the neurons of the CA1 region,
E2 is necessary for inducing LTP because pharmacological ER
blockade fully prevented this form of synaptic plasticity (Tozzi
et al., 2019). These studies also allowed to explore the role of
ER subtypes on LTP induction. The use of selective ERα and
ERβ inhibitors demonstrated that these ERs are both involved,
as the ERα blocker MPP and the ERβ blocker PHTPP were both
individually able to reduce LTP and were able to fully prevent
it when applied together (Tozzi et al., 2019). The role of E2
synthesis on hippocampal LTP was further explored in male rats
with experiments inhibiting the P450 aromatase activity (Tanaka
and Sokabe, 2012, 2013; Hojo et al., 2015) and more recently by
proving that ERα stimulation is able to induce LTP (Clements
and Harvey, 2020). The role of E2 in the LTP induction has also
been confirmed in mice knock-out for the P450 aromatase of
both sexes, providing direct evidence that in the hippocampus,
neuron-derived E2 is able to rapidly regulate the P450 aromatase-
dependent Akt-ERK and CREB-BDNF signaling, essential for
normal expression of LTP and synaptic plasticity (Lu et al., 2019).

The influence of E2 on LTP induction was generally observed
in the hippocampus of adult male rats; however, different research
groups pointed to age-dependent effects, with E2-dependent LTP
observed only in young animals (Foy et al., 1999; Bi et al.,
2000; Hojo et al., 2008). The influence of E2 on LTP has been
also hypothesized to be gender specific. When E2 synthesis

was chronically inhibited with letrozole, the LTP induction was
prevented in female rats but not in males. This gender-dependent
effect was paralleled by reduction of spine formation (Vierk et al.,
2012; Fester and Rune, 2015). However, in a subsequent paper,
the same group provided evidence that P450 aromatase inhibition
by letrozole, applied acutely, prevented LTP induction both in
male and female animals, confirming a more general role of E2
in hippocampal LTP (Vierk et al., 2012).

MODULATION OF P450 AROMATASE
AFFECTS LTP INDUCTION

The pharmacological prevention of hippocampal LTP by
inhibition of the E2 synthesis or of the ERs activity suggests that
E2 is required during the induction phase of LTP, when neuronal
afferences are activated by electrical stimulation. P450 aromatase
is expressed at hippocampal level and it has been shown that
its activation depends on neuronal activity (Kimoto et al., 2001;
Hojo et al., 2004, 2008; Balthazart et al., 2006). Whether the
P450 aromatase activity is responsible for a tonic synthesis
of local E2 or is dependent on neural phasic inputs has not
been established yet. Experimental evidences show that different
high- or low-frequency stimulations in the rat hippocampus may
account for bidirectional synaptic plasticity, with the synthesis
of estrogen and androgens directly implicated in synaptic
potentiation or depression, respectively (Tozzi et al., 2019). For
example, whereas the inhibition of P450 aromatase impedes
LTP induced by high-frequency stimulation, the concomitant
presence of exogenous E2 allows a full LTP expression in a dose-
dependent manner (Di Mauro et al., 2015, 2017). Moreover,
while low-frequency stimulation normally depresses synaptic
transmission (LTD), in the presence of exogenous E2, it is
able to induce LTP. These evidences confirm that in the rat
hippocampus E2 is a key factor for eliciting LTP and suggest that
different stimulating frequency patterns might modulate the P450
aromatase activity and the local E2 neo-synthesis to sustain LTP
(Di Mauro et al., 2015, 2017).

Different research groups described a relation between
changes of intracellular Ca2+ concentrations and P450 aromatase
activity, implying the modulation of E2 synthesis (Balthazart
et al., 2005; Fester et al., 2016). However, the precise mechanism
by which neuronal electrical activity may lead to a Ca2+-
dependent increase or decrease of E2 synthesis is still unknown.
Exogenous glutamate application and K+-induced membrane
depolarization have been suggested to trigger neuronal calcium-
induced calcium release from intracellular Ca2+ stores, leading
to enhancement of Ca2+ concentrations. This has been shown to
lead to the activation of Ca2+-dependent kinases, P450 aromatase
phosphorylation, and subsequent inhibition of E2 synthesis
(Balthazart et al., 2001, 2003, 2005; Balthazart and Ball, 2006;
Charlier et al., 2015; Fester et al., 2016). Moreover, a mechanism
involving the action of extracellular E2 on NMDAR and on
voltage-activated Ca2+ channels has been proposed to regulate
E2 synthesis by influencing P450 aromatase activity (Zhao et al.,
2005; Fester et al., 2016; Figure 1). Other investigators suggested
a different scenario, describing a direct role of the NMDAR
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activation in the enhancement of intracellular Ca2+ with opposite
effects on P450 aromatase activity. It has been reported that
NMDAR activation triggers Ca2+-dependent kinases activity and
increases E2 synthesis by P450 aromatase stimulation (Hojo
et al., 2004; Figure 1). One possible explanation that might
account for these opposite findings is the different experimental
modality employed to stimulate neurons. Different glutamate
receptors’ activation and velocity of Ca2+ entry into the cell may
lead to opposite phosphorylation–dephosphorylation processes.
The induction of LTP under the enhanced E2 availability was
prevented by an inhibitor of calcium–calmodulin-dependent
protein kinase II (CaMKII), suggesting that E2 is able to

potentiate NMDA receptor function inducing an increase of
postsynaptic Ca2+ concentration that in turn activates CaMKII
leading to LTP induction (Hasegawa et al., 2015; Figure 1).

INVOLVEMENT OF NEURAL E2 ON
HIPPOCAMPAL LTD

The involvement of neural E2 on the scaling down of synaptic
transmission, as in the case of LTD, has also been explored
because the ability of E2 to modify synaptic plasticity via long-
term depression may be an additional mechanism by which

FIGURE 1 | Involvement of neural 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT), produced by testosterone (Test), in the induction of hippocampal
high-frequency stimulation (HFS)–dependent long-term potentiation (LTP) and low-frequency stimulation (LFS)–dependent long-term depression (LTD). (A) The
HFS-mediated glutamate (Glut) release stimulates large Ca2+ influx into dendritic spines through NMDA receptors. Ca2+ can activate calmodulin, PKC, and MAPK
leading to phosphorylation (green symbols) of AMPA and NMDA glutamate receptors triggering LTP. Ca2+ is suggested to also stimulate P450 aromatase (ARO)
activity increasing or decreasing the synthesis of E2, according to specific inputs to NMDARs and the Ca2+-dependent enzymes involved. After HFS, the synthesis
of E2 may be locally enhanced and E2, released by presynaptic terminals and by the glia, may bind to membrane-gathered estrogen receptors (ERs) and to induce
LTP through MAPK stimulation. (B) Graph showing the time course of the excitatory postsynaptic current (EPSC) amplitudes as percentage of the baseline, before
and after an HFS is delivered to Schaffer collaterals in patch-clamp experiments from rat hippocampal CA1 pyramidal cells in control conditions (green time-course
plot) and in the presence of the ER blocker ICI 182780 (10 µM, ICI) applied for the duration of the experiment (blue time-course plot). Note the LTP induced in
control conditions but not in the presence of the ER blocking agent ICI. Superimposed representative traces showing an EPSC recorded before and 40 min after the
HFS protocol in control conditions (green) and in the presence of ICI (blue). Scale bars: 10 ms; 50 pA. (C) LFS allows modest Ca2+ inflow into the postsynaptic
neuron through NMDARs. Low Ca2+ levels are suggested to stimulate the 5α-reductase (RED)-dependent biosynthesis of DHT from testosterone (Lu et al., 2019).
The locally synthesized DHT together with DHT released by presynaptic terminals and glia is suggested to activate membrane-gathered androgen receptors (AR)
leading to the activation of calcineurin and to the dephosphorylation (red symbols) of different targets involved in LTD including the NMDAR. (D) Time-course graph
of the EPSC amplitudes, before and after an LFS in control conditions (green time-course plot) and in the presence of the AR blocker flutamide (10 µM, Flu) applied
for the duration of the experiment (blue time-course plot). Note the LTD induced in control conditions but not in the presence of the AR blocking agent Flu.
Superimposed representative traces showing an EPSC recorded before and 40 min after the LFS protocol in control conditions (green) and in the presence of Flu
(blue). Scale bars 10 ms; 50 pA. Modified by Tozzi et al. (2019).
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E2 can enhance learning and memory. In fact, E2 might act
to improve memory by suppressing forgetting via an LTD-
based mechanism.

Brain aging is generally associated to a decreased ability of
memory processing and, in aged rats, to a facilitated hippocampal
LTD. Accordingly, LTD amplitude was found to be larger in aged
rats than in adults, and interestingly, treatments with E2 was
reported to prevent this enhanced LTD in these aged animals
but not in adults (Foy, 2001). Hippocampal LTD can be elicited
by modest Ca2+ inflows entering into neurons via NMDA or
metabotropic group I glutamate (mGluI) receptors (Shiroma
et al., 2005). Interestingly, it has been found that the threshold for
the induction of the NMDAR-dependent LTD could be enhanced
or lowered by the stimulation of ERα or ERβ, respectively,
confirming the role of ERs on LTD induction (Ooishi et al., 2012).
Moreover, experiments also using ERα- and ERβ-knock-out mice
confirmed that E2 may be able to rapidly enhance hippocampal
LTD, presumably by a NMDAR- and ERα-dependent mechanism
of action (Mukai et al., 2007; Murakami et al., 2015). However,
electrophysiological experiments conducted in the presence of
inhibitors of the E2 synthesizing enzyme or of the ERs suggested
a minor role of E2 in hippocampal LTD because in the presence
of these drugs, hippocampal LTD of male adult rats remained
unchanged (Pettorossi et al., 2013a; Di Mauro et al., 2015, 2017).

ANDROGENS AFFECT HIPPOCAMPAL
LTP AND LTD

It is well known that testosterone and its more active metabolite
DHT attenuate mild cognitive impairment in men, suggesting
a role of androgens in sustaining synaptic memory (Hogervorst
et al., 2004; Pike et al., 2006; Kang et al., 2014; Pan et al.,
2016). The concentration of these neurosteroids appears to
be positively related with hippocampal synaptic spine density,
suggesting that androgens are required for hippocampus-related
cognitive performances (Moffat et al., 2002; Ooishi et al., 2012).
The effects of androgens on the induction of hippocampal LTP
and LTD has been recently examined by using drugs able to
inhibit ARs or the 5α-reductase, the enzyme catalyzing the
conversion of testosterone into DHT. Experimental findings
demonstrated that in the rat CA1 hippocampal area, LTD is fully
prevented under pharmacological blockade of either the AR or
the 5α-reductase. These pharmacological actions, however, were
unable to influence LTP in the same brain region and suggest
that in the hippocampus, androgens sustain LTD but not LTP
induction (Grassi et al., 2011; Grassi et al., 2013; Pettorossi et al.,
2013a; Di Mauro et al., 2015; Di Mauro et al., 2017; Tozzi et al.,
2019; Figure 1). Accordingly, ARs were found to be expressed
in the hippocampus at the postsynaptic level (Tabori et al., 2005;
Hatanaka et al., 2009), implying that ARs may participate in
androgen-induced LTD.

Because testosterone may be converted either into E2 or
DHT, depending on the prevalence, respectively, of the P450
aromatase or 5α-reductase synthesizing activity, it is suggested
that the modulation of these biosynthetic pathways might in turn
promote LTP or LTD in neurons (Di Mauro et al., 2015, 2017).

Moreover, it is possible that the conversion of testosterone into
DHT might limit the E2 neo-synthesis and the consequent
possibility to induce LTP. Moreover, it has been hypothesized
that a specific frequency of neuronal stimulation might drive
hippocampal metabolism of testosterone toward conversion into
E2 or DHT to sustain, respectively, LTP or LTD induction
(Di Mauro et al., 2015).

Long-term depression in neurons may be based on
different mechanisms, most of them implying an NMDAR-,
mGluR- or endocannabinoid-dependent signaling. Ca2+

is suggested to play a role in LTD entering into neurons
by glutamate receptors such as NMDARs during synaptic
electric stimulations. Low-frequency stimulations (LFS)
would produce low Ca2+ increases through NMDARs in the
postsynaptic dendritic spines (Figure 1). After Ca2+-calmodulin
formation, sequential activation of protein phosphatase 2B
(calcineurin), dephosphorylation of inhibitor-1, activation of
protein phosphatase 1 (PP1), and dephosphorylation of ser845
on the AMPAR subunit GluA1 would lead to internalization
of AMPARs from the synapse, changes of the conductance
properties of these receptors ultimately inducing LTD (Mulkey
et al., 1994). However, how androgens are involved in LTD
induction has been poorly investigated. It has been proposed
that LFS-induced LTD is established in the hippocampus via
DHT binding to synaptic ARs on delivery of LFS, leading to
calcineurin activation and NMDAR suppression, resulting
in a decreased presence or dephosphorylation of AMPARs
(Hasegawa et al., 2015).

ESTROGENIC AND ANDROGENIC SEX
NEUROSTEROIDS AFFECT VESTIBULAR
LTP AND LTD

The vestibular system is responsible for stabilizing the eyes and
the body in space and is crucial for self-motion perception.
It is involved in several plastic phenomena like the visuo-
vestibular calibration (Lisberger and Miles, 1980), the vestibular
compensation (Smith and Curthoys, 1989; Dutia, 2010), and
the responsiveness to intense stimulation (Massot et al., 2012;
Pettorossi et al., 2013b). Because LTP and LTD expression
have been demonstrated in the vestibular nuclei and are likely
involved in these adaptive responses (Grassi et al., 1995), the
contribution of sex neurosteroids has been explored in medial
vestibular nucleus (MVN).

Medial vestibular nucleus neurons express the E2 synthesizing
enzyme P450 aromatase and both estrogen and androgen
receptors. Specifically, immunoreactivity for ERα, ERβ, and AR
have been found in these neurons, most of them co-localizing
ERβ and AR (Grassi et al., 2013). Electrophysiological studies in
rat MVN neurons showed that E2 affects synaptic transmission
and neuronal excitability facilitating both the LTP of the primary
vestibular afferents and the intrinsic membrane excitability
(Grassi et al., 2007, 2009, 2010). Specifically, during LTP, E2
depresses the spontaneous action potential discharge in both
regular (A type) and irregular (B type) discharging neurons,
while the synaptic response to vestibular nerve stimulation is
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increased in B type neurons with a net effect of enhancement
of the signal-to-noise ratio of synaptic response in these
neurons, relative to resting activity of all MVN neurons. These
combined effects may be necessary to specifically enhance the
dynamic properties of neuronal activation of vestibular circuits.
Interestingly, pharmacological inhibition of E2 synthesis by
letrozole or antagonism of ERs by ICI 182780 was reported not
only to prevent the induction of LTP but also to unmask LTD
of synaptic plasticity, suggesting that the level of neural E2 is a
key modulator of MVN neurons’ synaptic plasticity, being able
to shift LTP into LTD according to the local availability of this
neurosteroid (Grassi et al., 2009, 2010).

Because MVN neurons have been reported to also express
androgens, it is plausible that androgens play an important
role in LTD induction of synaptic plasticity also in MVN, as
demonstrated in other brain regions such as the hippocampus. In
fact, it has been shown that the pharmacological antagonism of
ARs abolishes this form of synaptic plasticity in MVN neurons,
as observed by electrophysiological recordings (Scarduzio et al.,
2012, 2013). However, differently from what was observed in the
hippocampus, the reduction of DHT synthesis from testosterone
by pharmacological inhibition of 5α-reductase did not affect LTD,
suggesting a more direct effect of testosterone and/or a greater
sensitivity of MVN neurons to this neurosteroid with respect to
DHT (Scarduzio et al., 2012, 2013).

NEURAL E2 AFFECTS CEREBELLAR LTP
AND LTD

The cerebellum participates with the vestibular system to most
of the adaptation observed in the gaze stability with multiple
synaptic plasticity mechanisms (Lisberger and Miles, 1980). In
particular, together with the vestibular nuclei, it is responsible for
the vestibulo-ocular reflex calibration (Hogervorst et al., 2004). In
this encephalic structure, the encoding gain increase and decrease
adaptation is thought to be mediated by LTP occurring at the
parallel fiber–Purkinje cell synapses (PF-LTP) and by LTD (PF-
LTD) at the same or different synapse subset, respectively (Hansel
et al., 2001; Boyden and Raymond, 2003; Boyden et al., 2004;
Coesmans et al., 2004; Broussard et al., 2011).

The cerebellum expresses ERs, ARs, and the synthesizing
enzymes for E2 and androgens (Sakamoto et al., 2003; Tsutsui
et al., 2011; Hedges et al., 2012). The first evidence of the
influence of neural E2 in cerebellar learning has been provided
by a study in which synaptic plasticity at the Purkinje cell
and the VOR adaptation was examined in ovariectomized mice,
in ERβ knock-out female mice, and in male mice, after the
administration of E2 (Andreescu et al., 2007). These authors
found that E2 had relevant impact on the expression of VOR
gain-down adaptation and regulated cerebellar synaptic plasticity
influencing PF-LTP. First, it was shown that E2 enhanced the
LTP amplitude at the PF–Purkinje cell synapse, while leaving
LTD unaffected. Second, in Purkinje cells, ERβ activation by
E2 significantly improved the gain-decrease adaptation of the
VOR (Andreescu et al., 2007). In a subsequent study, the impact
of E2 in the cerebellar synaptic plasticity was examined by

pharmacological inhibition of E2 synthesis in male rats both
in vitro at the PF–Purkinje cell synapses and in vivo evaluating
the VOR adaptation (Dieni et al., 2018a,b). The application of the
P450 aromatase inhibitor letrozole in the flocculus of cerebellar
slices prevented the PF-LTP without affecting the PF-LTD
impeding the adaptive gain reduction of the VOR. Together with
the sex neurosteroid-mediated bidirectional vestibular synaptic
plasticity, the cerebellum participates in the visuo-vestibular
calibration of the VOR. It is likely that E2 facilitates the gain-
increase of VOR by acting at the level of the vestibular system and
the gain-down regulation by acting at the level of the cerebellum
(Dieni et al., 2018a,b).

NEURAL E2 AFFECTS STRIATAL LTP

Neural E2 exerts an important role in LTP induction in the
nucleus striatum with E2 receptors diffusely expressed in the
basal ganglia (Creutz and Kritzer, 2004; Krentzel et al., 2019).
Electrophysiological experiments performed in neurons of the
dorsal striatum of the male rat showed that E2 synthesis and
ER activation are required for the induction of LTP in both
spiny projection neurons (SPNs) and cholinergic interneurons
because the pharmacological inhibition of P450 aromatase or
antagonism of ERs completely prevented the LTP induction of
SPNs with no effect on LTD or synaptic depotentiation (Tozzi
et al., 2015). Because striatal dopamine (DA) release is critical
for LTP induction in this brain structure (Calabresi et al., 2007)
and based on the evidence that striatal LTP depends on E2 local
synthesis, the interaction between E2 and DA in controlling SPNs’
LTP was explored. Tozzi et al. (2015) suggested that the E2 and
DA signaling systems converge on the stimulation of the cAMP–
PKA intracellular pathway to facilitate LTP induction in striatal
neurons via a cooperation between the D1 DA receptor and the
ERs (Tozzi et al., 2015). These findings were also supported by
experiments showing a possible facilitatory influence of E2 in the
dorsal striatum where DA release has been demonstrated to be
potentiated by E2 (Song et al., 2019).

NEURAL E2 AFFECTS LTP IN THE
AMYGDALA

17β-estradiol is suggested to play a role in synaptic plasticity also
in the amygdala, a brain structure where the presence of P450
aromatase has been reported (Zhao et al., 2007; Bender et al.,
2017). The amygdala is considered a core nucleus of “emotional”
memory and for the responses to emotion (Pape and Pare, 2010).
Accordingly, dysfunction of its neuronal networks is implicated
in pathological conditions such as depression and post-traumatic
stress disorder (Tovote et al., 2015). Depression-like symptoms
have been observed in women under treatment with P450
aromatase inhibitors providing evidence of the importance of
the E2 signaling system in the amygdala-related physiology
(Gallicchio et al., 2012).

In a recent study, Bender and colleagues (Bender et al., 2017)
explored the possible influence of the E2 in the LTP induction of
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neurons of the basolateral amygdala, a brain region characterized
by important synaptic plasticity and by the presence of P450
aromatase both in male and female rodents. Here, the authors
found that, beside the effect on the spine density, pharmacological
inhibition of P450 aromatase prevented the LTP induction in
amygdala slices of female rodents but not in males. The gender-
specific role of E2 in LTP of amygdala neurons points to
the importance of conducting further studies in the field to
better understand the sex-related differences observed in mood
disorders and to take into account the side effects of P450
aromatase inhibitors.

THE ROLE OF CIRCULATING
HORMONES

Whether circulating sex hormones affect the long-term synaptic
changes induced by electrical neuronal activity in the brain is an
intriguing possibility. E2 synthesized in the CNS may be affected
by the estrous cycle in rodent, as reported in the rat hippocampus
where neural E2 levels changed according to different phases of
the cycle (Kato et al., 2013). Neural E2 changes were suggested
to result by indirect access of fluctuating hematic progesterone
into the brain and its subsequent conversion into E2 (Kato
et al., 2013) or by changes of the phosphorylation status of P450
aromatase depending on fluctuation of different kinases related to
synaptic plasticity (Balthazart and Ball, 2006; Hojo and Kawato,
2018). The resulting effect of neural E2 fluctuations appeared
to be correlated in the rat hippocampus with the induction of
LTP or LTD together with changes of dendritic spine density.
In fact, it has been shown that the LTP amplitude changes are
depending on the estrum phase in the hippocampus (Warren
et al., 1995). Subsequent comparative studies on the occurrence
and amplitude of LTP were performed in vestibular neurons of
male and female rats (Pettorossi et al., 2011). Specifically, while
HFS protocol was able to consistently induce LTP in male rats
within seconds (fast-developing LTP), in females HFS protocol
produced fast and slow LTP or even LTD. The amplitude and
occurrence of LTP depended on the estrous phases, with minor
probability to induce fast LTP in proestrus (Pettorossi et al.,
2011). This effect might depend on the marked structural changes
of the neurons during the estrous cycle, but it might also be a
result of the influence of circulating hormones in the synthesis
of the neurosteroids. It has been found, in fact, that the acute
administration of testosterone that induces LTP in male can
induce LTD in female only during the proestrus phase (Grassi
et al., 2012). This suggests that in the presence of high levels of
circulating E2 (proestrus), the conversion of testosterone into E2
is inhibited, whereas the synthesis of DHT is facilitated.

The interesting data obtained by analyzing the long-term
responses in vestibular nuclei prompt to extend this study to the
hippocampus by using a similar approach for understanding how
memory and learning could be correlated with the expression
of the neural synaptic plasticity. Changes in the thresholds
of the induction of long-term phenomena might vary with
behavioral changes, as reported in EEG experiments in women
(Sumner et al., 2018).

DENDRITIC SPINE REMODELING IS
ASSOCIATED TO HIPPOCAMPAL
E2-DEPENDENT LTP

Most of the studies on the role of sex neurosteroids in
hippocampal synaptic plasticity demonstrated that E2 facilitates
LTP induction and enhances dendritic spine formation. E2
has been reported to increase apical dendritic spine formation
in projections that are closed to presynaptic terminals on
hippocampal CA1 pyramidal cells. It has been reported that
this action is achieved by activation of genomic ERs, most
likely the ERα (Gould et al., 1990; Woolley et al., 1990, 1996;
Woolley and McEwen, 1993; Murphy and Segal, 1996; Woolley,
1998; Hao et al., 2003; MacLusky et al., 2005). Accordingly,
ERs activation is able to either decrease GABAergic inhibition
(Murphy et al., 1998; Rudick and Woolley, 2001) and increase
NMDAR expression and function (Weiland, 1992; Warren et al.,
1995; Gazzaley et al., 1996; Cordoba Montoya and Carrer, 1997;
Woolley et al., 1997; Good et al., 1999; Cyr et al., 2000, 2001; Bi
et al., 2001; Rudick and Woolley, 2001), ultimately increasing the
spine density of neurons. Hippocampal LTP have in fact been
correlated to the simultaneous increase of both the spine density
and the NMDAR-dependent synaptic transmission (Smith and
McMahon, 2005, 2006), suggesting that E2 during LTP formation
is able to trigger both morphological and functional changes.
Synaptic changes induced by E2 during LTP were reported
to affect the structure of neuronal circuitry by increasing the
polymerization of filamentous actin proteins in the dendritic
spines (Kramar et al., 2009) and by rapidly enhancing their
head structure and density via activation of ERα, but not ERβ

(Ooishi et al., 2012).
The morphological and electrophysiological changes triggered

by E2 during LTP may be part of the same E2-dependent
mechanism. Synergic effects consisting of formation of new
spines and stabilization of synaptic strength in active mature
synapses have in fact been reported to be necessary for long-term
synaptic consolidation of neurotransmission (Toni et al., 1999;
Yang et al., 2008). However, an alternative possibility considers
the functional and structural events happening during E2-
dependent LTP formation as two distinct phenomena, according
to experiments of acute or chronic inhibition of E2 synthesis
(Vierk et al., 2012; Fester and Rune, 2015).

Overall, even if it is possible to hypothesize that initial
structural changes of dendritic spines induced by E2 precede
a full LTP induction, the idea that neural E2 is able to
trigger LTP more rapidly than any possible change of synaptic
structure is likely to occur. In this scenario, the induction of
LTP of synaptic transmission, involving the increased synthesis
or availability of E2 during neuronal activity, might represent
the early phase in the process that allows subsequent spine
formation and consolidation (Yang et al., 2008; Kato et al., 2013;
Dickens et al., 2014).

Interestingly, neural androgens may also increase spine
structure suggesting that the machinery at the basis of synaptic
plasticity needs structural improvement either for the induction
of the E2-mediated LTP and for the induction of androgen-
mediated LTD (Leranth et al., 2004; Hatanaka et al., 2009).
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Thus, sex neurosteroids are suggested to influence long-
term synaptic plasticity by complex mechanisms of action,
with estrogens and androgens producing opposite effects on
LTP and LTD induction, respectively, and both of them
being responsible for the enhancement of dendritic spine
formation. This reveals a multifaceted mechanism at the
base of neurosteroid influence in synaptic plasticity. In fact,
estrogens and androgens have opposite effects in the long-term
synaptic events, being the LTP induced by E2 and the LTD
by androgens, whereas both neurosteroids enhance dendritic
spine formation.

Beside their contribution in synaptic plasticity, the
evidence reported in this review of the literature underly
the involvement of these molecules in the regulation
of several behavioral aspects that are related to the

motor system function, to emotional manifestations
and cognition.
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